Rayleigh‐wave diffractions due to a void in the layered half space
نویسندگان
چکیده
Void detection is challenging due to the complexity of near-surface materials and the limited resolution of geophysical methods. Although multichannel, high-frequency, surface-wave techniques can provide reliable shear (S)-wave velocities in different geological settings, they are not suitable for detecting voids directly based on anomalies of the S-wave velocity because of limitations on the resolution of S-wave velocity profiles inverted from surface-wave phase velocities. Xia et al. (2006a) derived a Rayleigh-wave diffraction traveltime equation due to a void in the homogeneous half space. Encouraging results of directly detecting a void from Rayleigh-wave diffractions were presented (Xia et al., 2006a). In this paper we used four twodimensional square voids in the layered half space to demonstrate the feasibility of detecting a void with Rayleigh-wave diffractions. Rayleigh-wave diffractions were recognizable for all these models after removing direct surface waves by F-K filtering. We evaluate the feasibility of applying the Rayleigh-wave diffraction traveltime equation to a void in the layered earth model. The phase velocity of diffracted Rayleigh waves is predominately determined by surrounding materials of a void. The modeling results demonstrate that the Rayleigh-wave diffraction traveltime equation due to a void in the homogeneous half space can be applied to the case of a void in the layered half space. In practice, only two diffraction times are necessary to define the depth to the top of a void and the average velocity of diffracted Rayleigh waves.
منابع مشابه
Feasibility of Detecting Voids with Rayleigh-wave Diffraction
Void detection is challenging due to the complexity of near-surface materials and the limited resolution of geophysical methods. Although multichannel, high-frequency, surfacewave techniques can provide reliable S-wave velocities in different geological settings, they are not suitable for detecting voids directly based on anomalies of the S-wave velocity because of limitations on the resolution...
متن کاملRayleigh Wave in an Incompressible Fibre-Reinforced Elastic Solid Half-Space
In this paper, the equation of motion for an incompressible transversely isotropic fibre-reinforced elastic solid is derived in terms of a scalar function. The general solution of the equation of motion is obtained, which satisfies the required radiation condition. The appropriate traction free boundary conditions are also satisfied by the solution to obtain the required secular equation for...
متن کاملRayleigh Wave in an Initially Stressed Transversely Isotropic Dissipative Half-Space
The governing equations of a transversely isotropic dissipative medium are solved analytically to obtain the surface wave solutions. The appropriate solutions satisfy the required boundary conditions at the stress-free surface to obtain the frequency equation of Rayleigh wave. The numerical values of the non-dimensional speed of Rayleigh wave speed are computed for different values of frequency...
متن کاملA Potential Method for Body and Surface Wave Propagation in Transversely Isotropic Half- and Full-Spaces
The problem of propagation of plane wave including body and surface waves propagating in a transversely isotropic half-space with a depth-wise axis of material symmetry is investigated in details. Using the advantage of representation of displacement fields in terms of two complete scalar potential functions, the coupled equations of motion are uncoupled and reduced to two independent equations...
متن کاملInfluence of Heterogeneity on Rayleigh Wave Propagation in an Incompressible Medium Bonded Between Two Half-Spaces
The present investigation deals with the propagation of Rayleigh wave in an incompressible medium bonded between two half-spaces. Variation in elastic parameters of the layer is taken linear form. The solution for layer and half-space are obtained analytically. Frequency equation for Rayleigh waves has been obtained. It is observed that the heterogeneity and width of the incompressible medium h...
متن کامل